WILEY

Lennox-Gastaut Syndrome: Aetiology, Clinical Presentations, Diagnosis, and Treatment Challenges

A guide for health professionals

Epilepsy syndromes are characterised by a cluster of symptoms, and clinical and electroencephalographic (EEG) features with distinct underlying aetiologies¹

Immune

Structural

Genetic Met

Metabolic

Infectious

They are classified on the basis of:1

Lennox-Gastaut Syndrome (LGS) is a complex and severe DEE which begins in childhood and has a wide range of aetiologies^{2,3}

It is a rare condition, accounting for 2–5% of all childhood epilepsies²

- LGS has an estimated prevalence of:²
 - 0.1–0.28 per 100,000 people
 - 2 per 100,000 children
- Slightly more common in males
- Usually begins before
 18 years of age with a peak onset between 3 to 5 years³

The clinical presentation of LGS is diverse and evolves over time³

Severe infantile epilepsy syndromes often evolve to LGS^{1,3}

3.6% of all children with epilepsy

19%) of children with infantile seizures

30%

of children with infantile epileptic spasms syndrome

Visit <u>https://lgs.knowledgehub.wiley.com</u> for additional resources

Characteristics and distinguishing features^{1,3}

- Multiple types of drug-resistant seizures with onset prior to 18 years
- Persistent focal abnormalities with diffuse slow spike-and-wave complexes of <2.5 Hz
 - ← Generalised paroxysmal fast (activity (GPFA) in sleep ≥10 Hz

Atypical absences with rhythmic jerking or loss of tone

Tonic seizures along with at least one additional seizure type: atypical absences, atonic, myoclonic, focal impaired awareness, generalised tonic-clonic, nonconvulsive status epilepticus, and epileptic spasms

Cognitive and behavioural impairments, which may not be present at seizure onset

Aetiology^{3,4}

Results from high-frequency, synchronised activity in bilaterally distributed brain networks that develops during a susceptible period in childhood

(PA)

- Identifiable factors 65% to 75% of patients
 - Acquired brain injury or insult
 - Tuberous sclerosis complex
 - Congenital central nervous system infections
 - Brain malformations
 - Hereditary metabolic disorders
- LGS from unknown causes

Clinical course³

Developmental impairment preceding onset of seizures or normal behaviour and development at the time of onset

Drug-resistant seizures which persist into adulthood

Developmental stagnation or decline following frequent seizures

Atypical absence and tonic seizures remain frequent in adults, while atonic seizures settle over time

Developmental regression or plateauing is associated with significant intellectual disability in >90% of patients

Can co-exist with other childhood behavioural disorders including hyperactivity, aggression, autism spectrum disorder, and sleep disturbances

Visit <u>https://lgs.knowledgehub.wiley.com</u> for additional resources

Diagnosis³

Neurophysiology - EEG

- Tonic seizure recorded in sleep + one additional seizure type, brief apnoea with electromyographic axial muscle contraction
- Structural aetiologies magnetic resonance imaging
 - Focal or diffuse cortical malformations
- Tuberous sclerosis complex

• Acquired brain injury such as hypoxic-ischemic encephalopathy

- Pathogenic genetic variants molecular and genetic testing
- Chromosomal microarray
- Next-generation sequencing techniques whole genome/exome sequencing, or an epilepsy gene panel

• Tumours

Assessment of neuro-metabolites

Challenges in the diagnosis of LGS^{1,3}

LGS and other epilepsy syndromes share clinical and imaging features

Typical features of LGS during childhood onset can evolve over time and may be missed in previously undiagnosed adults

Differential diagnosis of LGS³

Ruling out other epilepsy syndromes

Epilepsy syndrome	Distinguishing features compared to LGS		
Epilepsy with myoclonic-atonic seizures	 Normal development prior to seizure onset Myoclonic-atonic seizures Faster generalised spike-and-wave pattern, typically >3 Hz 		
Prolonged, hemiclonic seizure in infancy, often during a febrile illness	 Prolonged, hemiclonic seizures Tonic seizures occur later 		
DEE spike-and-wave activation in sleep (SWAS) and EE-SWAS	 Regression and marked activation of epileptiform abnormalities in sleep SWAS – 'nearly continuous diffuse SW complexes in slow-wave sleep' 		
Ring chromosome 20 syndrome	 Refractory epilepsy Intellectual disability Behavioural abnormalities Awake patients frequently experience nonconvulsive status epilepticus 		
Frontal lobe epilepsy	 Bilateral tonic seizures, often with asymmetrical features Slow spike-and-wave and generalised paroxysmal fast activity characteristic of LGS are not noted 		
Rare metabolic disorders	 Features similar to LGS Neuronal ceroid lipofuscinosis type 2 disease has a childhood onset with normal development or isolated speech delay Progressive motor and cognitive decline and ataxia following onset of seizures Characteristic photoparoxysmal response at 1–3 Hz on EEG 		

Visit https://lgs.knowledgehub.wiley.com for additional resources

Challenges in the treatment of LGS^{3,4}

- Drug-resistant and refractory seizures
- Multiple seizure types can lead to poor prognosis and long-term outcomes
- Unfavourable evolution and life-long neurodevelopmental sequelae
- Conventional biochemical and molecular biomarkers have limited applicability
 - Seizure aggravation requires polytherapy, which can increase the risk of adverse effects

Complete control of seizures along with resolution of developmental and psychosocial dysfunction is nearly unachievable⁴

Treatment goals^{3,4}

- Seizure control
- Medical treatment
- **Dietary modifications**
- Surgical management

Reducing the frequency of incapacitating seizures like drop attacks and tonic-clonic seizures

Improving cognition, mood, alertness, and overall quality of life

Considerations for improving the diagnosis and treatment of LGS^{1,3,4,5}

Defining epilepsy syndromes based on their specific aetiology and electroclinical phenotype can aid their accurate diagnosis

Understanding the evolution of seizures and periodic assessments can help reduce misdiagnosis

Assessment of specific biomarkers such as paroxysmal fast activity in the brain tissue, which are associated with the generation of seizures, can aid the diagnosis and treatment of LGS

in the therapeutic regimen

	\mathbf{i}

Periodic assessments of LGS criteria during the evolution of seizures can help clinicians include appropriate anti-seizure medications

References:

- Wirrell, E., Nabbout, R., Scheffer, I. E., Alsaadi, T., Bogacz, A., French, J. A., ... & Tinuper, P. (2022). Methodology for classification and definition of epilepsy syndromes 1 with list of syndromes: Report of the ILAE Task Force on Nosology and Definitions. Epilepsia, 63(6), 1333–1348.
- Dini, G., Di Cara, G., Ferrara, P., Striano, P., & Verrotti, A. (2023). Reintroducing fenfluramine as a treatment for seizures: Current knowledge, recommendations and gaps in understanding. Neuropsychiatric Disease and Treatment, 2013-2025.
- Specchio, N., Wirrell, E., Scheffer, I. E., Nabbout, R., Riney, K., Samia, P., ... & Auvin, S. (2022). International League Against Epilepsy classification and definition of epilepsy 3. syndromes with onset in childhood: Position paper by the ILAE Task Force on Nosology and Definitions. Epilepsia, 63(6), 1398–1442.
- 4. Asadi-Pooya, A. A. (2018). Lennox-Gastaut syndrome: a comprehensive review. Neurological Sciences, 39(3), 403–414.
- Dalic, L. J., Warren, A. E. L., Spiegel, C., Thevathasan, W., Roten, A., Bulluss, K. J., & Archer, J. S. (2022). Paroxysmal fast activity is a biomarker of treatment response in 5. deep brain stimulation for Lennox-Gastaut syndrome. Epilepsia, 63(12), 3134-3147

Visit https://lgs.knowledgehub.wiley.com for additional resources

This education resource has been supported by UCB. UCB has had no influence over the content or selection of the Editorial Panel